Physics Today, Backscatter, March 2018
Tilted frictional fingers
Eriksen J.A., Toussaint R., Måløy K.J., Flekkøy E.G., Galland O. and Sandnes B. Pattern formation of frictional fingers in a gravitational potential. Phys. Rev. Fluids 3, 013801 (2018). Eriksen_PRFluids2018_preprint
Frictional fingers in gravity
Pattern formation of frictional fingers in a gravitational potential
Jon Alm Eriksen, Renaud Toussaint, Knut Jørgen Måløy, Eirik Flekkøy, Olivier Galland, and Bjørnar Sandnes
Phys. Rev. Fluids 3, 013801 – Published 3 January 2018
Gravity induces parallel growth of finger structures which forms when air displaces a granular-liquid mixture. The alignment direction, which varies between horizontal and vertical, is explained by the interplay between surface tension, yield stresses, and the hydrostatic potential.
Gas-driven fracturing
Gas-Driven Fracturing of Saturated Granular Media
James M. Campbell, Deren Ozturk, and Bjørnar Sandnes
Phys. Rev. Applied 8, 064029 – Published 29 December 2017
Gas-driven fracturing underlies both natural and industrial processes, such as volcanic degassing, methane venting, stimulated hydrocarbon extraction, and treatment of contaminated soil. The authors show how in such a complex system the capillary, frictional, and viscous interactions together produce a range of fracture patterns, with cracks separated by a characteristic length that varies based on the conditions. Discovering how material properties and injection rate affect these patterns helps to establish a physics framework for optimizing permeability and assessing risk in gas-driven fracturing of hydrocarbon reservoirs and remediation of polluted soil.