Frictional fingers in gravity

Pattern formation of frictional fingers in a gravitational potential

Jon Alm Eriksen, Renaud Toussaint, Knut Jørgen Måløy, Eirik Flekkøy, Olivier Galland, and Bjørnar Sandnes
Phys. Rev. Fluids 3, 013801 – Published 3 January 2018

Gravity induces parallel growth of finger structures which forms when air displaces a granular-liquid mixture. The alignment direction, which varies between horizontal and vertical, is explained by the interplay between surface tension, yield stresses, and the hydrostatic potential.


Gas-driven fracturing

Gas-Driven Fracturing of Saturated Granular Media

James M. Campbell, Deren Ozturk, and Bjørnar Sandnes
Phys. Rev. Applied 8, 064029 – Published 29 December 2017

Gas-driven fracturing underlies both natural and industrial processes, such as volcanic degassing, methane venting, stimulated hydrocarbon extraction, and treatment of contaminated soil. The authors show how in such a complex system the capillary, frictional, and viscous interactions together produce a range of fracture patterns, with cracks separated by a characteristic length that varies based on the conditions. Discovering how material properties and injection rate affect these patterns helps to establish a physics framework for optimizing permeability and assessing risk in gas-driven fracturing of hydrocarbon reservoirs and remediation of polluted soil.


3rd InterPore UK conference

David and Deren presented their work at the 3rd Interpore UK Conference which took place at the University of Warwick, 4th – 5th September.

Deren even won the BEST POSTER award for his poster on “Three-Phase Flow and Fracturing of Deformable Porous Media”!